## Lect5

## Linear wire antennas

## Dr. Gehan Sami

## INFINITESIMAL DIPOLE $\ell \leq \lambda / 50$

$$
\begin{aligned}
& \mathbf{I}\left(z^{\prime}\right)=\hat{\mathbf{a}}_{z} I_{0} \quad \mathbf{A}(x, y, z)=\frac{\mu}{4 \pi} \int_{C} \mathbf{I}_{e}\left(x^{\prime}, y^{\prime}, z^{\prime} \frac{e^{-j k R}}{R} d l^{\prime}\right. \\
& R=\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}}=\sqrt{x^{2}+y^{2}+z^{2}} \\
& \quad=r=\text { constant } \\
& d l^{\prime}=d z^{\prime} \\
& \mathbf{A}(x, y, z)=\hat{\mathbf{a}}_{z} \frac{\mu I_{0}}{4 \pi r} e^{-j k r} \int_{-l / 2}^{+l / 2} d z^{\prime}=\hat{\mathbf{a}}_{z} \frac{\mu I_{0} l}{4 \pi r} e^{-j k r}
\end{aligned}
$$



$$
A_{\theta}=-A_{z} \sin \theta=-\frac{\mu I_{0} l e^{-j k r}}{4 \pi r} \sin \theta
$$

$\mathbf{E}=-j \omega \mathbf{A}$

$$
E_{\theta}=j \eta \frac{k I_{0} l \sin \theta}{4 \pi r} e^{-j k r}
$$

$$
\begin{array}{r}
W_{r}=\frac{\eta}{8}\left|\frac{I_{0} l}{\lambda}\right|^{2} \frac{\sin ^{2} \theta}{r^{2}} \quad P=\int_{0}^{2 \pi} \int_{0}^{\pi} W_{r} r^{2} \sin \theta d \theta d \phi=\eta \frac{\pi}{3}\left|\frac{I_{0} l}{\lambda}\right|^{2} \\
P_{\mathrm{rad}}=\frac{1}{2}\left|I_{0}\right|^{2} R_{r} \quad R_{r}=\eta\left(\frac{2 \pi}{3}\right)\left(\frac{l}{\lambda}\right)^{2}=80 \pi^{2}\left(\frac{l}{\lambda}\right)^{2}
\end{array}
$$

## Example 4.1

Find the radiation resistance of an infinitesimal dipole whose overall length is $l=\lambda / 50$.
Solution: Using (4-19)

$$
R_{r}=80 \pi^{2}\left(\frac{l}{\lambda}\right)^{2}=80 \pi^{2}\left(\frac{1}{50}\right)^{2}=0.316 \mathrm{ohms}
$$

Since the radiation resistance of an infinitesimal dipole is about 0.3 ohms , it will present a very large mismatch when connected to practical transmission lines, many of which have characteristic impedances of 50 or 75 ohms . The reflection efficiency $\left(e_{r}\right)$ and hence the overall efficiency $\left(e_{0}\right)$ will be very small.


- Far field zone:

1-field components are transverse to radial direction from antenna, and all power flow is directed radially outward.
2-shape of radiation pattern is independent on distance.

- Near field zone:

1-field components may not transverse to radial direction from antenna and power is not entirely radial.
2-shape of radiation pattern is dependent on distance.

$$
\begin{gathered}
H_{r}=H_{\theta}=0 . \\
H_{\phi}=j \frac{k I_{0} l \sin \theta}{4 \pi r}\left[1+\frac{1}{j k r}\right] e^{-j k r} . \\
\text { Given in the Exam } \\
E_{r}=\eta \frac{I_{0} l \cos \theta}{2 \pi r^{2}}\left[1+\frac{1}{j k r}\right] e^{-j k r} \\
E_{\theta}=j \eta \frac{k I_{0} l \sin \theta}{4 \pi r}\left[1+\frac{1}{j k r}-\frac{1}{(k r)^{2}}\right] e^{-j k r} \\
E_{\phi}=0
\end{gathered}
$$

Near-Field $(k r \ll 1)$ Region

$$
\begin{array}{ll}
E_{r} \simeq-j \eta \frac{I_{0} l e^{-j k r}}{2 \pi k r^{3}} \cos \theta & E_{\theta} \simeq-j \eta \frac{I_{0} l e^{-j k r}}{4 \pi k r^{3}} \sin \theta \\
E_{\phi}=H_{r}=H_{\theta}=0 & H_{\phi} \simeq \frac{I_{0} l e^{-j k r}}{4 \pi r^{2}} \sin \theta
\end{array}
$$

Intermediate-Field ( $k r>1$ ) Region

$$
\begin{array}{ll}
E_{r} \simeq \eta \frac{I_{0} l e^{-j k r}}{2 \pi r^{2}} \cos \theta & E_{\theta} \simeq j \eta \frac{k I_{0} l e^{-j k r}}{4 \pi r} \sin \theta \\
E_{\phi}=H_{r}=H_{\theta}=0 & H_{\phi} \simeq j \frac{k I_{0} l e^{-j k r}}{4 \pi r} \sin \theta
\end{array}
$$

Far-Field ( $k r \gg 1$ ) Region

$$
\begin{aligned}
& E_{\theta} \simeq j \eta \frac{k I_{0} l e^{-j k r}}{4 \pi r} \sin \theta \quad H_{\phi} \simeq j \frac{k I_{0} l e^{-j k r}}{4 \pi r} \sin \theta \\
& E_{r} \simeq E_{\phi}=H_{r}=H_{\theta}=0
\end{aligned}
$$



Far-field observation point ( $x, y, z$ )

$$
\begin{aligned}
R & =\sqrt{x^{2}+y^{2}+\left(z-z^{\prime}\right)^{2}} \\
& =\sqrt{\left(x^{2}+y^{2}+z^{2}\right)+\left(z^{\prime 2}\right)-2\left(z z^{\prime}\right)} \\
& =\sqrt{r^{2}+z^{\prime 2}-2 z z^{\prime}} \\
& =r \sqrt{1+\left(\frac{z^{\prime}}{r}\right)^{2}-2\left(\frac{z z^{\prime}}{r^{2}}\right)} \\
& =r \sqrt{1+\left(\frac{z^{\prime}}{r}\right)^{2}-2\left(\frac{r \cos \theta z^{\prime}}{r^{2}}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& R=r[1+\underbrace{\left(\frac{-2 r z^{\prime} \cos \theta+z^{\prime 2}}{r^{2}}\right)}_{x}]^{1 / 2}=r[1+x]^{1 / 2}] \\
& R=r\left[1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3} \cdots \cdots\right] \\
& \left.R=r-z^{\prime} \cos \theta+\frac{1}{r}\left(\frac{z^{\prime 2}}{2} \sin ^{2} \theta\right)+\frac{1}{r^{2}}\left(\frac{z^{\prime 3}}{2} \cos \theta \sin ^{2} \theta\right)\right] \text { Given in the Exam } \\
& \begin{array}{l}
\text { Max at } \theta=90^{\circ} \quad
\end{array}
\end{aligned}
$$

To find reactive near field region

$$
\begin{gathered}
\left.\frac{k z^{\prime 3}}{2 r^{2}} \cos \theta \sin ^{2} \theta\right|_{\theta=\tan ^{-1} \sqrt{2}} ^{z^{\prime}=l / 2}=\frac{\pi}{\lambda} \frac{l^{3}}{8 r^{2}} \quad 0.385 \leq \frac{\pi}{8} \\
r \geq 0.62 \sqrt{l^{3} / \lambda}
\end{gathered}
$$

## DIRECTIVITY

$$
U=r^{2} W_{\mathrm{av}}=\frac{\eta}{8}\left(\frac{I_{0} l}{\lambda}\right)^{2} \sin ^{2} \theta \quad P_{\mathrm{rad}}=\eta \frac{\pi}{3}\left|\frac{I_{0} l}{\lambda}\right|^{2}
$$

$$
D=4 \pi \frac{U}{P_{\mathrm{rad}}}=\frac{3}{2} \sin ^{2} \theta
$$

$$
\frac{\mathrm{OR}}{\mathrm{D}}=\frac{4 \pi}{\int_{0}^{2 \pi} \int_{0}^{\pi} \sin ^{2} \theta \sin \theta \mathrm{~d} \theta \mathrm{~d} \Phi}=\frac{4 \pi}{2 \pi\left(\frac{4}{3}\right)}=\frac{3}{2}
$$



## EFFECTIVE APERTURE

## HALF POWER BEAMWIDTH

$$
A_{e m}=\left(\frac{\lambda^{2}}{4 \pi}\right) D_{0}=\frac{3 \lambda^{2}}{8 \pi}
$$

4-1. a.

$$
\begin{aligned}
& \sin \psi=\sqrt{1-\cos ^{2} \psi}=\sqrt{1-\left|\hat{a}_{x} \cdot \hat{a}_{r}\right|^{2}} \\
& =\sqrt{1-(\sin \theta \cdot \cos \phi)^{2}}
\end{aligned}
$$

In far-zone fields

$$
E_{\psi} \simeq j \eta \frac{k I_{0} \cdot l e^{-j k r}}{4 \pi r} \cdot \sin \psi=j \eta \frac{k \cdot I_{0} l e^{-j k r}}{4 \pi r} \sqrt{1-\left((\sin \theta \cdot \cos \phi)^{2}\right.}
$$

b.

$$
\begin{aligned}
U & =U_{0}\left(1-\sin ^{2} \theta \cos ^{2} \phi\right) \\
\therefore \text { Prod } & =U_{0} \int_{0}^{2 \pi} \int_{0}^{\pi}\left(1-\sin ^{2} \theta \cdot \cos ^{2} \phi\right) \cdot \sin \theta d \theta d \phi \\
& =U_{0} \int_{0}^{2 \pi} \int_{0}^{\pi} \sin \theta d \theta d \phi-\int_{0}^{\pi}\left(\sin ^{2} \theta\right) \cdot \sin \theta d \theta \int_{0}^{2 \pi} \cos ^{2} \phi d \phi=U_{0} \cdot \frac{8 \pi}{3} \\
& D_{0}
\end{aligned}=\frac{4 \pi \cdot U_{0}}{U_{0} \cdot \frac{8 \pi}{3}}=\frac{3}{2}=1.54
$$

4.-2.
a. $\sin \psi=\sqrt{1-\cos ^{2} \psi}=\sqrt{1-\left|\hat{a}_{y} \cdot \hat{a}_{r}\right|^{2}}$

$$
=\sqrt{1-\sin ^{2} \theta \cdot \sin ^{2} \phi}
$$

In far-zone fields


$$
\begin{aligned}
& E_{\psi}=j \eta \frac{k I_{0} l e^{-j k r}}{4 \pi r} \cdot \sin \psi=j \eta \frac{k I_{0} l e^{-j k r}}{4 \pi r} \cdot \sqrt{1-\sin ^{2} \theta \cdot \sin ^{2} \phi} \\
& H_{x} \simeq \frac{E_{\psi}}{\eta} \simeq j \frac{k I_{0} e^{-j k r} \cdot l}{4 \pi r} \sqrt{1-\sin ^{2} \theta \sin ^{2} \phi}
\end{aligned}
$$

b.

$$
\begin{aligned}
& U=U_{0}\left(1-\sin ^{2} \theta \sin ^{2} \phi\right) \\
& \begin{aligned}
P_{r a d} & =U_{0} \int_{0}^{2 \pi} \int_{0}^{\pi}\left(1-\sin ^{2} \theta \cdot \sin ^{2} \phi\right) \sin \theta d \theta d \phi=u_{0} \int_{0}^{2 \pi}\left[\int_{0}^{\pi} \sin \theta-\sin ^{3} \theta \cdot \sin ^{2} \phi d \theta\right] d \phi \\
& =U_{0}\left[\int_{0}^{2 \pi} 2 d \phi-\frac{4}{3} \int_{0}^{2 \pi} \sin ^{2} \phi d \phi\right]=u_{0}\left[4 \pi-\frac{4}{3} \pi\right]=\frac{8}{3} \pi \cdot u_{0} \\
D_{0} & =\frac{4 \pi \cdot u_{0}}{U_{0} \cdot \frac{8 \pi}{3}}=\frac{3}{2}=1.5
\end{aligned}
\end{aligned}
$$


$R \approx r$ in magnitude and phase ( max error for phase $=18^{\circ}$ at $I=\lambda / 10$ ) Dipole and geometry

$\mathbf{A}(x, y, z)=\frac{\mu}{4 \pi} \int_{C} \mathbf{I}_{e}\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \frac{e^{-j k R}}{R} d l^{\prime}$
$\mathbf{A}(x, y, z)=\frac{\mu}{4 \pi}\left[\hat{\mathbf{a}}_{z} \int_{-l / 2}^{0} I_{0}\left(1+\frac{2}{l} z^{\prime}\right) \frac{e^{-j k R}}{R} d z^{\prime}+\hat{\mathbf{a}}_{z} \int_{0}^{l / 2} I_{0}\left(1-\frac{2}{l} z^{\prime}\right) \frac{e^{-j k R}}{R} d z^{\prime}\right]$
which is half obtained by infinitesimal dipole
so Each of Far fields are half of infinitesimal
$\underline{\mathrm{u}}$ is $1 / 4^{*}$ of infinitesimal, prad is $1 / 4$ of infinitesimal $\overline{\mathrm{D}}$ same as infinitesimal as it $=4 \pi \cdot \mathrm{u} / \mathrm{p}_{\mathrm{rad}}$

## Wire Antenna (cont.)

characteristics of some dipole antennas

| Dipole <br> Type | Length | Current | Pattern | HP | $D$ | $D$ <br> $(\mathrm{~dB})$ | $R$, <br> $(\Omega)$ |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| Ideal | $L \ll \lambda$ | Uniform | $\sin \theta$ | $90^{\circ}$ | 1.5 | 1.76 | $80 \pi^{2}\left(\frac{L}{\lambda}\right)^{2}$ |
| Short | $L \ll \lambda$ | Triangle | $\sin \theta$ | $90^{\circ}$ | 1.5 | 1.76 | $20 \pi^{2}\left(\frac{L}{\lambda}\right)^{2}$ |
|  |  |  |  |  |  |  |  |

Half-wave $\quad L=0.5 \lambda \quad$ Sinusoid $\quad \frac{\cos \left(\frac{\pi}{2} \cos \theta\right)}{\sin \theta} \quad 78^{\circ} \quad 1.64 \quad 2.15 \quad \sim 70$


Half-wave


## Wire Antenna (cont.)

Finite length
Far-field observation point ( $x, y, z$ )

$$
\text { at } r \geq \frac{2 l^{2}}{\lambda}
$$

For phase approximation is

$$
R=r-z^{\prime} \cos \theta
$$

For distance approximation is

$$
R=r
$$

$$
\begin{aligned}
d E_{\theta} & \simeq j \eta \frac{k I_{e}\left(z^{\prime}\right) e^{-j k\left(r-z^{\prime} \cos \theta\right)}}{4 \pi r} \sin \theta d z^{\prime} \\
& \simeq j \eta \frac{k I_{e}\left(z^{\prime}\right) e^{-j k r}}{4 \pi r} \sin \theta e^{j k z^{\prime} \cos \theta} d z^{\prime}
\end{aligned}
$$

## Ideal Sinusoidal Current Distribution

$$
\underline{I}_{e}= \begin{cases}\hat{a}_{z} I_{0} \sin \left[k\left(\frac{l}{2}-z^{\prime}\right)\right] & 0 \leq z^{\prime} \leq l / 2  \tag{4-56}\\ \hat{a}_{z} I_{0} \sin \left[k\left(\frac{l}{2}+z^{\prime}\right)\right] & -l / 2 \leq z^{\prime} \leq 0\end{cases}
$$

$$
\left.\begin{array}{l}
\begin{array}{rl}
E_{\theta}=j \eta \frac{k e^{-j k r}}{4 \pi r} \sin \theta & \left\{\int_{-l / 2}^{0} I_{o} \sin \left[k\left(\frac{l}{2}+z^{\prime}\right)\right] e^{+j k z^{\prime} \cos \theta} d z^{\prime}\right.
\end{array} \\
\left.+\int_{0}^{+/ 2} I_{o} \sin \left[k\left(\frac{l}{2}-z^{\prime}\right)\right] e^{-j k^{\prime} \cos \theta} d z^{\prime}\right\}(4-60)
\end{array}\right\} \begin{aligned}
& \int e^{\alpha x} \sin [\beta x+\gamma] d x=\frac{e^{\alpha x}}{\alpha^{2}+\beta^{2}}[\alpha \sin (\beta x+\gamma)-\beta \cos (\beta x+\gamma)] \\
& \alpha= \pm j k \cos \theta, \quad \beta= \pm k, \quad \gamma=\frac{k l}{2} \quad(4-61 \mathrm{a}, \mathrm{~b}, \mathrm{c})
\end{aligned}
$$

$$
\begin{aligned}
& E_{\theta}=j \eta \frac{I_{o} e^{-j k r}}{2 \pi r}\left[\frac{\cos \left(\frac{k \ell}{2} \cos \theta\right)-\cos \left(\frac{k \ell}{2}\right)}{\sin \theta}\right] \\
& E_{\theta} \cong C[\underbrace{\left.\frac{\cos \left(\frac{k \ell}{2} \cos \theta\right)-\cos \left(\frac{k \ell}{2}\right)}{\sin \theta}\right]}_{\text {Field Pattern }} \\
& H_{\phi} \cong \frac{E_{\theta}}{\eta}, \quad C=j \eta \frac{I_{o} e^{-j k r}}{2 \pi r}
\end{aligned}
$$

Copyright© 2005 by Constantine A. Balanis

$$
\begin{aligned}
& \Rightarrow E_{\theta}=\frac{j \eta e^{-j k r}}{2 \pi r} \operatorname{Im} \frac{\cos \left[\left(\frac{k L}{2}\right) \cos \theta\right]-\cos \left[\frac{k L}{2}\right]}{\sin \theta} \& H_{\phi}=\frac{E_{\theta}}{3} \\
& \text { for } L=\frac{\lambda}{2} \text { (half-ubve Dipole), } E_{\theta}=\frac{j \eta e^{-j k r} \operatorname{In}}{2 \pi r} \frac{\cos \left[\left(\frac{\pi}{2}\right) \cos \theta\right]}{\partial \operatorname{in} \theta} \\
& \text { for } L=\lambda \text { (Full-Wer Dipde), } \quad E_{\theta}=\frac{j 3 e^{-j k r}}{2 \pi r} \operatorname{Im} \frac{\cos (\pi \cos \theta)+1}{\sin \theta} \\
& \text { for } L=\frac{3}{2} \lambda\left(1.5 \lambda \text {-loug bupe) }, \quad E_{\theta}=\frac{j \eta e^{-j h r} I_{m}}{2 \pi r} \frac{\cos \left(\frac{3}{2} \pi \cos \theta\right)}{\sin \theta}\right.
\end{aligned}
$$

## Wire Antenna (cont.)

Results


## Wire Antenna (cont.)

radiation intensity
$U=r^{2} W_{\mathrm{av}}=\eta \frac{\left|I_{0}\right|^{2}}{8 \pi^{2}}\left[\frac{\cos \left(\frac{k l}{2} \cos \theta\right)-\cos \left(\frac{k l}{2}\right)}{\sin \theta}\right]^{2}$

$$
\begin{align*}
P_{\mathrm{rad}} & =\int_{0}^{2 \pi} \int_{0}^{\pi} W_{\mathrm{av}} r^{2} \sin \theta d \theta d \phi \\
& =\eta \frac{\left|I_{0}\right|^{2}}{4 \pi} \int_{0}^{\pi} \frac{\left[\cos \left(\frac{k l}{2} \cos \theta\right)-\cos \left(\frac{k l}{2}\right)\right]^{2}}{\sin \theta} d \theta \tag{4-67}
\end{align*}
$$

Given in the exam

$$
\begin{align*}
P_{\mathrm{rad}}= & \eta \frac{\left|I_{0}\right|^{2}}{4 \pi}\left\{C+\ln (k l)-C_{i}(k l)+\frac{1}{2} \sin (k l)\left[S_{i}(2 k l)-2 S_{i}(k l)\right]\right. \\
& \left.+\frac{1}{2} \cos (k l)\left[C+\ln (k l / 2)+C_{i}(2 k l)-2 C_{i}(k l)\right]\right\} \tag{4-68}
\end{align*}
$$

where $C=0.5772$ (Euler's constant) and $C_{i}(x)$ and $S_{i}(x)$ are the cosine and sine integrals (see Appendix III)

$$
\begin{aligned}
R_{r}= & \frac{2 P_{\mathrm{rad}}}{\left|I_{0}\right|^{2}}=\frac{\eta}{2 \pi}\left\{C+\ln (k l)-C_{i}(k l)\right. \\
& +\frac{1}{2} \sin (k l) \times\left[S_{i}(2 k l)-2 S_{i}(k l)\right] \\
& \left.+\frac{1}{2} \cos (k l) \times\left[C+\ln (k l / 2)+C_{i}(2 k l)-2 C_{i}(k l)\right]\right\}
\end{aligned}
$$

For half wave length dipole: $k l=\pi$

| $\boldsymbol{x}$ | $S_{i}(\boldsymbol{x})$ | $C_{i}(\boldsymbol{x})$ | $\boldsymbol{C}_{\mathrm{in}}(\boldsymbol{x})$ |
| :--- | :--- | :--- | :--- |
| 6.2 | 1.41871 | -0.03587 | 2.43764 |
| 6.3 | 1.41817 | -0.01989 | 2.43765 |
| 3.1 | 1.85166 | 0.08699 | 1.62163 |
| 3.2 | 1.85140 | 0.05526 | 1.68511 |
|  |  |  |  |
| $R_{r}=60^{*} 1.217=73.05 \Omega$ | $R_{\text {rad }} \approx 73[\Omega]$ |  |  |

## Input resistance for finite dipole

For lossless antenna input resistance contain radiation resistance where $\mathrm{R}_{\text {loss }}=0$
the radiation resistance is referred to the maximum current which for some lengths $(3 \lambda / 4, \lambda)$ does not occur at the input terminals of the antenna

$$
P_{\mathrm{in}}=P_{\mathrm{rad}}
$$

$$
\frac{\left|I_{i n}\right|^{2}}{2} R_{\text {in }}=\frac{\left|I_{o}\right|^{2}}{2} R_{r}
$$

where

$$
\begin{aligned}
R_{i n} & =\text { radiation resistance at input (feed) terminals } & R_{r} & =\text { radiation resistance at current maximum } \\
I_{i n} & =\text { current at input terminals } & I_{0} & =\text { current maximum }
\end{aligned}
$$

For dipole of length $l \leq \boldsymbol{\lambda}$

$$
\begin{aligned}
& I_{i n}=I_{o} \sin \left(\frac{k l}{2}\right) \\
& R_{\text {in }}=\frac{R_{r}}{\sin ^{2}\left(\frac{k l}{2}\right)}
\end{aligned}
$$




Figure 4.9 Radiation resistance, input resistance and directivity of a thin dipole with sinusoidal current distribution.

## Directivity

the radiation pattern of a dipole becomes more directional as its length increases. When the overall length is greater than one wavelength, the number of lobes increases and the antenna loses its directional properties.

$$
F(\theta)=\left[\frac{\cos \left(\frac{k l}{2} \cos \theta\right)-\cos \left(\frac{k l}{2}\right)}{\sin \theta}\right]^{2}
$$

$$
D_{0}=\frac{\left.2 F(\theta)\right|_{\max }}{Q}
$$

$$
Q=\left\{C+\ln (k l)-C_{i}(k l)+\frac{1}{2} \sin (k l)\left[S_{i}(2 k l)-2 S_{i}(k l)\right]\right.
$$

$$
\begin{equation*}
\left.+\frac{1}{2} \cos (k l)\left[C+\ln (k l / 2)+C_{i}(2 k l)-2 C_{i}(k l)\right]\right\} \tag{4-75a}
\end{equation*}
$$

For half wavelength dipole

$$
D_{0}=\frac{2}{1.217}=1.64 \quad, \quad A_{e m}=\frac{\lambda^{2}}{4 \pi} D_{0}
$$

Normalized amplitude pattern for dipoles of lengths $>\lambda$

$$
\mathrm{L}=1.25 \lambda
$$



$$
\mathrm{L}=1.5 \lambda
$$


dipoleCH4.m

## Monopoles and Dipoles

- Monopoles and dipoles are widely used antennas in wireless communications systems.
- Monopoles are particularly popular for portable units and on automobiles and other vehicles.
- In practice, wide use is made of the quarterwavelength monopole.


## Monopoles and Dipoles


(a) $\lambda / 4$ monopole on infinite electric conductor

## Monopoles and Dipoles


(b) Equivalent of $\lambda / 4$ monopole on infinite electric conductor

Copyright©2005 by Constantine A. Balanis All rights reserved

Chapter 4 Linear Wire Antennas

## Monopoles and Dipoles

$$
\left.\begin{array}{|l|}
Z_{i n}(\text { monopole }) \tag{4-106}
\end{array}=\frac{1}{2} Z_{i n} \text { (dipole) }\right)
$$

## For $\lambda / 2$ Dipole



Copyright©2005 by Constantine A. Balanis All rights reserved

## $\lambda / 4$ Monopole on Infinite Electric Conductor



Fig. 4.19(a)

Copyrightc 2005 by Constantine A. Balanis All rights reserved

